

# FINAL CA – November 2017

ADVANCED MANAGEMENT ACCOUNTING

Test Code – p 7 Branch (MULTIPLE) (Date : 11.06.2017)

(50 Marks)

## Note : All questions are compulsory.

#### **Question 1(4 Marks)**

- a. Under the Hungarian Assignment Method, the prerequisite to assign any job is that each row and column must have a zero value in its corresponding cells. If any row or column does not have any zero value then to obtain zero value, each cell values in the row or column is subtracted by the correspondingminimum cell value of respective rows or columns by performing row or column operation. This means *if any row or column have two or more cells having <u>same minimum value</u> then these row or column will have more than one zero. However, having two zeros does not necessarily imply two equal values in the original assignment matrix just before row and column operations. <u>Two zeroes in a same row can also be possible by two different operations</u> <i>i.e. one zero from row operation and one zero from column operation*. (2 marks)
- **b.** The order of matrix in the assignment problem is  $4 \times 4$ . The total assignment (allocations) will be four. In the assignment problem when any allocation is made in any cell then the corresponding row and column become unavailable for further allocation. Hence, these corresponding row and column are crossed mark to show unavailability. In the given assignment matrix two allocations have been made in A24 (2<sup>nd</sup> row and 4<sup>th</sup> column) and A32 (3<sup>rd</sup> row and 2<sup>nd</sup> column). This implies that  $2^{nd}$  and  $3^{rd}$  row and  $2^{nd}$  and  $4^{th}$  column are unavailable for further allocation. Therefore, the other allocations are at either at A11 and A43 or at A13 and A41. (2 marks)

# Question 2(8 Marks)

# The cumulative average time *per batch* for the first 25 batches (3 marks)

The usual learning curve model is

Where

 $y = ax^b$ 

- y = Average time per batch (hours) for x batches
- a = Time required for first batch (hours)
- x = Cumulative number of batches produced
- b = Learning coefficient

The Cumulative Average Time per batch for the first 25 batches

| У     | = 1,000 × (25) <sup>-0.322</sup> |
|-------|----------------------------------|
| log y | = log 1,000 –0.322 × log 25      |
| log y | = log 1,000 –0.322 × log (5 × 5) |
| log y | = log 1,000 -0.322 × [2 × log 5] |
| log y | = 3 – 0.322 × [2 × 0.69897]      |
| log y | = 2.549863                       |
| У     | = antilog of 2.549863            |
| У     | = 354.70 hours                   |

# (ii) The time taken for the 25<sup>th</sup> batch(2 marks)

| Total Time for first 25         |                                                 |
|---------------------------------|-------------------------------------------------|
| batches                         | = 354.70 hours × 25 batches                     |
|                                 | = 8,867.50 hours                                |
| Total Time for first 24 batches | 359.40 hours × 24 batches = 8,625.60<br>= hours |
| Time taken for 25th batch       | = 8,867.50 hours – 8,625.60 hours               |
|                                 |                                                 |

= 241.90 hours

# (iii) Average 'Selling Price' of the final 500 units(3 marks)

| Particulars                                                 | Amount (` ) |
|-------------------------------------------------------------|-------------|
| Direct Labour [(8,867.50 hrs. + 241.90 hrs. × 25 batches) > | <``         |
| 6]                                                          | 89,490      |
| Add: Other Variable Costs (5,000 units × `19)               | 95,000      |
| Add: Fixed Costs                                            | 40,000      |
| Total Life Cycle Cost                                       | 2,24,490    |
| Add: Desired Profit                                         | 80,000      |
| Expected Sales Value                                        | 3,04,490    |
| Less: Sales Value (4,500 units × ` 64)                      | 2,88,000    |
| Sales Value (Decline Stage)(                                | A) 16,490   |
| Sales Units (Decline Stage)(                                | B) 500      |
| Average Sales Price per unit(A)/                            | (B) 32.98   |

# Question 3(5 Marks)

| Basis   | Skimming Price                      | Penetration Pricing                      |  |  |
|---------|-------------------------------------|------------------------------------------|--|--|
| Meaning | Pricing Policy of highly pricing a  | Pricing Policy of entering the market    |  |  |
|         | product at the entry level into the | with a low price, then establishing the  |  |  |
|         | market and reducing it later.       | product and then increasing the price.   |  |  |
| Use     | This method is preferred in the     | This is used by companies with           |  |  |
|         | beginning because in the initial    | established markets, when products       |  |  |
|         | periods when the demand for the     | are in any stage of their life cycle, to |  |  |
|         | product is not known the price      | avoid competition. This is also known    |  |  |
|         | covers the initial cost of          | as "stay-out pricing".                   |  |  |
|         | production.                         |                                          |  |  |
| Target  | It is used when market is price     | It is a policy of using a low price as   |  |  |
| Market  | insensitive, demand inelastic or to | the principal instrument for             |  |  |
|         | recover high promotional costs      | penetrating mass markets early.          |  |  |
| Example | Electronic goods, mobile phone,     | Entry of a new model small segment       |  |  |
|         | TVs, etc.                           | car into the market.                     |  |  |
|         |                                     |                                          |  |  |

#### Question 4(8 Marks)

Let the P<sub>1</sub>, P<sub>2</sub> and P<sub>3</sub> be the three products to be manufactured. Then the data are as follows:

| Draduata              |     | Produ | ict ingredients | ;                 |
|-----------------------|-----|-------|-----------------|-------------------|
| Products              | Α   | В     | С               | Inert Ingredients |
| <b>P</b> 1            | 5 % | 10%   | 5%              | 80%               |
| <b>P</b> <sub>2</sub> | 5%  | 5%    | 10%             | 80%               |
| P <sub>3</sub>        | 20% | 5%    | 10%             | 65%               |
| Cost per kg (`)       | 64  | 16    | 40              | 16                |

# Cost of Product P1

= 5% × `64 + 10% × `16 + 5% × `40 + 80% × `16 = `19.60 per kg

#### Cost of Product P2

- = 5% × `64 + 5% × `16 + 10% × `40 + 80% × `16
- = `20.80 per kg.

# **Cost of Product P3**

- = 20% × `64 + 5% × `16 + 10% × `40 + 65% × `16
- = `28.00 per kg.

Let  $x_1$ ,  $x_2$ , and  $x_3$  be the quantity (in kg) of P<sub>1</sub>, P<sub>2</sub>, and P3 respectively to be manufactured. The LP problem can be formulated:

# **Objective function:** (2 marks)

Maximize Z = (Selling Price - Cost Price) × Quantity of Product = ( $^{32.60} - ^{19.60}$ ) x<sub>1</sub> + ( $^{34.80} - ^{20.80}$ ) x<sub>2</sub> + ( $^{36.00} - 28$ ) x<sub>3</sub>

 $= 13x_1 + 14x_2 + 8x_3$ 

# Subject to Constraints: (6 marks)

| Or  | $2x_1 + x_2 + x_3 \le$               | 3,600 |
|-----|--------------------------------------|-------|
|     | $1/20 x_1 + 1/10 x_2 + 1/10 x_3 \le$ | 120   |
| Or  | $x_1 + 2x_2 + 2x_3 \le$              | 2,400 |
|     | <b>x</b> <sub>1</sub> ≤              | 30    |
| and | X1 , X2 , X3 ≥                       | 0     |

#### Question 5 (9 Marks)

# Impact on Profit of Continuance of Production by Renewing the Lease (3 marks)

|                                     |     |     | Fac   | ctories |       |
|-------------------------------------|-----|-----|-------|---------|-------|
|                                     |     | Α   | В     | С       | Total |
| Sales                               | (A) | 600 | 2,400 | 1,200   | 4,200 |
| Less: Variable Cost                 |     |     |       |         |       |
| Raw Material                        |     | 150 | 700   | 290     | 1,140 |
| Direct Labour                       |     | 150 | 560   | 280     | 990   |
| Factory Overheads (Variab           | le) | 40  | 220   | 110     | 370   |
| Selling Overheads (Variabl          | e)  | 46  | 140   | 80      | 266   |
| Total Variable Costs                | (B) | 386 | 1,620 | 760     | 2,766 |
| Contribution $\dots(C) = (A) - (A)$ | B)  | 214 | 780   | 440     | 1,434 |
| Less: Fixed Cost                    |     |     |       |         |       |
| Factory Overheads (Fixed)           |     | 80  | 240   | 120     | 440   |
| Selling Overheads (Fixed)           |     | 30  | 100   | 60      | 190   |
| Administration Overheads            |     | 40  | 180   | 80      | 300   |
| Head Office Expenses                |     | 24  | 100   | 60      | 184   |
| Additional Lease Rent               |     | 24  |       |         | 24    |
| Total Fixed Costs                   | (D) | 198 | 620   | 320     | 1,138 |
| Profit (C)-                         | (D) | 16  | 160   | 120     | 296   |

(`in lakhs)

The above statement shows that though profit is reduced from existing `320 lakhs to `296 lakhs, still factory 'A' generates a contribution towards head office expenses

|                      | When Pro                      | oduction o | of Factory | When Prod                     | uction of | Factory |
|----------------------|-------------------------------|------------|------------|-------------------------------|-----------|---------|
|                      | A is Transferred to Factory B |            |            | A is Transferred to Factory C |           |         |
|                      | В                             | С          | Total      | В                             | С         | Total   |
| Sales                | 3,000                         | 1,200      | 4,200      | 2,400                         | 1,800     | 4,200   |
| Less: Variable Costs | 2,065                         | 760        | 2,825      | 1,620                         | 1,196     | 2,816   |
| Contribution         | 935                           | 440        | 1,375      | 780                           | 604       | 1,384   |
| Less: Fixed Costs    | 720                           | 320        | 1,040      | 620                           | 400       | 1,020   |
| Profit               | 215                           | 120        | 335        | 160                           | 204       | 364     |

Since transfer of production of factory 'A' to factory 'C' yields higher profit, i.e., `364 lakhs, this course is recommended.

## Workings

Variable and Fixed Costs When the Production of Factory 'A' is Transferred to Factory 'B'-(1 mark) (`in lakhs)

|                  |       |                    | ( 11 10(113) |
|------------------|-------|--------------------|--------------|
|                  | Sales | Variable Costs     | Fixed Costs  |
| 'B'              | 2,400 | 1,620              | 620          |
| 'A'              | 600   | 405                |              |
|                  |       | <u>1,620</u> x 600 |              |
|                  |       | 2, 400             |              |
| Additional Costs |       | 40.00              | 100          |
|                  |       | (80,000* ×`50)     |              |
| Total            | 3,000 | 2,065              | 720          |

(\*) 80,000 units (`600 lakhs ÷ `750)

Variable and Fixed Costs when the Production of Factory 'A' is transferred to Factory 'C'-(1 mark)

(`in lakhs)

|                  | Sales | Variable Costs        | Fixed Costs |
|------------------|-------|-----------------------|-------------|
| ʻC'              | 1,200 | 760                   | 320         |
| 'A'              | 600   | 380                   |             |
|                  |       | `760<br>x600<br>1,200 |             |
| Additional Costs |       | 56<br>(80,000 ×`70)   | 80          |
| Total            | 1,800 | 1,196                 | 400         |

# Question 6 (8 Marks)

| Warehous | Market |      |             |     |    |  |
|----------|--------|------|-------------|-----|----|--|
| e        | I      | II   | Ш           | IV  |    |  |
| Α        | 5      | 2 12 | 4 1         | 3 9 | 22 |  |
| В        | 4      | 8    | 1 <b>15</b> | 6   | 15 |  |
| С        | 4 7    | 6    | 7 1         | 5   | 8  |  |
| Req.     | 7      | 12   | 17          | 9   | 45 |  |

The Initial basic solution worked out by the shipping clerk is as follows-

The initial solution is tested for optimality. The total number of independent allocations is 6 which is equal to the desired (m + n - 1) allocations. We introduce ui's (i = 1, 2, 3) and vi's (j = 1, 2, 3, 4). Let us assume u<sub>1</sub> = 0, remaining ui's and vi's are calculated as below-

|    |    |    |   |   | Ui |
|----|----|----|---|---|----|
|    | 1  | 2  | 4 | 3 | 0  |
|    | -2 | -1 | 1 | 0 | -3 |
|    | 4  | 5  | 7 | 6 | 3  |
| Vj | 1  | 2  | 4 | 3 |    |

# (u<sub>i</sub> + v<sub>j</sub>) Matrix for Allocated / Unallocated Cells

Now we calculate  $\Delta i j = C i j - (u i + v j)$  for non-basic cells which are given in the table below-

 $\Delta_{ij}$  Matrix

| 4 |   |    |
|---|---|----|
| 6 | 9 | 6  |
|   | 1 | -1 |

Since one of the  $\Delta_{ij}$  's is negative, the schedule worked out by the clerk is **not the optimal solution**. (1 mark)

(ii) Introduce in the cell with negative ij [R<sub>3</sub>C<sub>4</sub>], an assignment. The reallocation is done as follows-

|   | 12 | 1  | 9  |
|---|----|----|----|
|   |    | +1 | 1  |
|   |    | 15 |    |
| 7 |    | 1  |    |
|   |    | -1 | +1 |

**Revised Allocation Table** 

|   | 12 | 2  | 8 |
|---|----|----|---|
|   |    | 15 |   |
| 7 |    |    | 1 |

Now we test the above improved initial solution for optimality-

|    | (ui + vj) Matrix for Allocated |    |   | / Unallocated | Cells |
|----|--------------------------------|----|---|---------------|-------|
|    |                                |    |   |               | Ui    |
|    | 2                              | 2  | 4 | 3             | 0     |
|    | -1                             | -1 | 1 | 0             | -3    |
|    | 4                              | 4  | 6 | 5             | 2     |
| Vj | 2                              | 2  | 4 | 3             |       |
|    |                                |    |   |               |       |

(u<sub>i</sub> + v<sub>j</sub>) Matrix for Allocated / Unallocated Cells

Now we calculate  $\Delta i j = C i j - (u i + v j)$  for non-basic cells which are given in the table below-

| 5 9 6 | 3 |   |   |   |
|-------|---|---|---|---|
|       | 5 | 9 |   | 6 |
| 2 1   |   | 2 | 1 |   |

Since all i for non -basic cells are positive, the solution as calculated in the above table is the optimal solution. (2 Marks)

The supply of units from each warehouse to markets, along with the transportation cost is given below- (1 Mark)

| Warehouse | Market | Units | Cost per unit (`) | Total Cost (`) |
|-----------|--------|-------|-------------------|----------------|
| A         | I      | 12    | 2                 | 24             |
| A         | III    | 2     | 4                 | 8              |
| A         | IV     | 8     | 3                 | 24             |
| В         | 111    | 15    | 1                 | 15             |
| С         | I      | 7     | 4                 | 28             |
| С         | IV     | 1     | 5                 | 5              |
|           |        | 104   |                   |                |

(iii) If the clerk wants to consider the carrier of route C to II only, instead of 7 units to I and 1 unit to IV, it will involve shifting of 7 units from (A, II) to (A, I) and 1 unit to (A, IV) which results in the following table- (2 marks)

|    |           |     | Marke | et          |            | Supply |
|----|-----------|-----|-------|-------------|------------|--------|
|    | Warehouse | Ι   | II    | III         | IV         | ouppiy |
|    | Α         | 5 7 | 2 4   | 4 2         | 3 <b>9</b> | 22     |
| G  | B         | 4   | 8     | 1 <b>15</b> | 6          | 15     |
| (i | C         | 4   | 6 8   | 7           | 5          | 8      |
|    | Req.      | 7   | 12    | 17          | 9          | 45     |

The transportation cost will become- (1 mark)

| Warehouse | Market | Units | Cost per unit (`) | Total Cost (`) |
|-----------|--------|-------|-------------------|----------------|
| A         | I      | 7     | 5                 | 35             |
| A         | I      | 4     | 2                 | 8              |
| A         | III    | 2     | 4                 | 8              |
| A         | IV     | 9     | 3                 | 27             |
| В         | III    | 15    | 1                 | 15             |
| С         | II     | 8     | 6                 | 48             |
|           | 141    |       |                   |                |

The total shipping cost will be `141. Additional

Transportation Cost `37.

The carrier of C to II must reduce the cost by `4.63 (`37/8) so that the total cost of transportation remains the same and clerk can give him business. (1 mark)

# Question 7 ( 4 Marks)

# Relevant / Not Relevant (1 mark for each cost)

| S. No.         | Name of the Cost   | Evomplo                    | Relevant / Not<br>Relevant |
|----------------|--------------------|----------------------------|----------------------------|
| <b>5.</b> INO. | Name of the Cost   | Example                    |                            |
|                |                    |                            | Not Relevant in            |
| (i)            | Sunk Cost          | Written down value of      | decision                   |
|                |                    | machine already            | making.                    |
|                |                    | purchased.                 |                            |
|                |                    |                            |                            |
| (ii)           | Opportunity Cost   | Funds invested in business | Useful in decision         |
|                |                    | or deposited into bank.    | making.                    |
|                |                    |                            | C C                        |
| (iii)          | Out of Pocket Cost | Commission to salesman     | Relevant for decision      |
|                |                    | on sales, Carriage inward. | making.                    |
|                | Differential       |                            |                            |
| (iv)           | Cost               | Include all fixed cost and | Relevant in specific       |
|                |                    | variable cost which are    | decision making.           |
|                |                    | increased /decreased.      | _                          |
|                |                    |                            |                            |

# Question 8 ( 4 marks)

# Statement Showing "Operating Loss" (2 marks)

|                       | If Plant is Continued | If Plant is Shutdown |
|-----------------------|-----------------------|----------------------|
|                       | 7,60,000              |                      |
| Less: Variable Cost   | 5,70,000              |                      |
| Contribution          | 1,90,000              |                      |
| Less: Fixed Cost      | 3,50,000              | 1,30,000             |
| Less: Additional Cost |                       | 15,000               |
| Operating Loss        | 1,60,000              | 1,45,000             |

## **Decision on Shut Down**

A comparison of loss figures (indicated as above) points out that loss is reduced by **`15,000** (` 1,60,000 - ` 1,45,000) if plant is shut down.

 $\rightarrow$  Accordingly, plant should be Shut Down. (1 mark)

| Shut Down Point                               | _ | ` 3,50,000 - `1,45,000 |
|-----------------------------------------------|---|------------------------|
| Shut Down Foint                               |   | ` 8 - `6               |
|                                               | = | 1,02,500 units         |
| Capacity Level at Shut Down Point (%)(1 mark) |   |                        |
| At 100% Level – Production Capacity           |   | = <u>95000 units</u>   |
|                                               |   | 118750                 |
|                                               |   |                        |

= 0.80

Capacity Level at Shut Down Point(1 mark)

<u>1,02,500units</u>

86.32%

1,18,750units

=

\*\*\*\*\*